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A convolutional neural network for defect classification in
Bragg coherent X-ray diffraction
Bruce Lim1,2,7, Ewen Bellec 2,7, Maxime Dupraz 2,3,7✉, Steven Leake2, Andrea Resta4, Alessandro Coati4, Michael Sprung5,
Ehud Almog6, Eugen Rabkin6, Tobias Schulli2 and Marie-Ingrid Richard 2,3✉

Coherent diffraction imaging enables the imaging of individual defects, such as dislocations or stacking faults, in materials. These
defects and their surrounding elastic strain fields have a critical influence on the macroscopic properties and functionality of
materials. However, their identification in Bragg coherent diffraction imaging remains a challenge and requires significant data
mining. The ability to identify defects from the diffraction pattern alone would be a significant advantage when targeting specific
defect types and accelerates experiment design and execution. Here, we exploit a computational tool based on a three-dimensional
(3D) parametric atomistic model and a convolutional neural network to predict dislocations in a crystal from its 3D coherent
diffraction pattern. Simulated diffraction patterns from several thousands of relaxed atomistic configurations of nanocrystals are
used to train the neural network and to predict the presence or absence of dislocations as well as their type (screw or edge). Our
study paves the way for defect-recognition in 3D coherent diffraction patterns for material science.
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INTRODUCTION
Defect detection and classification are important issues in material
science, as defects strongly influence the properties of materials1–
4. Although metallurgy has long recognized the importance of
defects for the macroscopic mechanical properties (e.g., such as
enhanced yield strength of steel), their more widespread influence
in other fields of material science is still lacking detailed
understanding. Nevertheless, the concept of strain engineering
in a vast variety of functional materials is attracting a lot of
attention, opening great opportunities for the design and
optimization of the mechanical, optical, electrical, or catalytic
properties of materials via deliberate defect manipulation5–7.
Crystal defects of various nature and length scales are not always
adverse but can instead activate specific functionalities, such as
improving adsorption affinity or catalytic activity. For instance,
twins and stacking faults can improve the catalytic efficiency of
nanoparticles8, and more generally the strain generated by
defects can affect the catalytic activity9. Similarly, the role of
dislocations in battery performance has drawn the attention of
scientists and could be a key point for further optimization6. This
defect sensitivity might open new avenues to engineering the
properties of nanostructures by introducing specific defects. In
order to achieve this goal, it is important to detect and classify
defects in nanomaterials to better understand their behaviors
(nucleation, propagation, annihilation, defect-defect interaction).
Unlike perfect crystals that can be described as equilibrium

structures, the physics and thermodynamics of defects is much
harder to describe with the available theoretical tools. It is thus of
greatest relevance to supply imaging techniques capable of
delivering tomographic reconstructions of the crystal structure in
the close environment of defects. Few experimental techniques
can achieve this goal. Among them, transmission electron
microscopy (TEM) is routinely used to image dislocations in real

space by selecting relevant diffraction vectors, according to
established invisibility criteria10. It has atomic resolution and can
directly image individual crystal defects. However, the technique is
hindered by several constraints related to sample preparation.
These constraints are relaxed for X-rays, which have a great
potential to study defects in crystals. With the advent of new
generation synchrotron sources with higher coherent flux, a very
attractive technique to probe the microstructure of defects has
emerged: coherent X-ray diffraction (CXD)11,12. In Bragg geometry,
it probes the local deviation from the perfect crystal lattice and is
therefore highly sensitive to elastic strain13 and crystal defects
such as stacking faults14 or dislocation loops15. In the past two
decades, the technique has been turned into an imaging
technique (Bragg Coherent Diffraction Imaging, BCDI), combining
measurements of three-dimensional (3D) Coherent X-ray diffrac-
tion patterns (CXDPs) with phase retrieval algorithms16,17, to
obtain a spatial reconstruction of isolated nanoscale objects18. The
technique has been used successfully to image the strain field in
defective nanocrystals6,19 including for relatively complex defect
configurations20,21, but tends to fail for highly strained systems. In
addition, phase retrieval algorithms are relatively slow, while a live
evaluation of the data is often required during in situ and
operando experiments. This is particularly true in the case of Bragg
ptychography, which requires a considerable amount of data.
There is therefore an interest in understanding CXDPs qualitatively
and interpreting them directly in reciprocal space. Depending on
their type and on the measured Bragg reflection, single-crystal
defects have indeed a unique signature on CXDPs which enables
their identification directly from the reciprocal space data22. For
instance, a screw dislocation will lead to a ring-shaped Bragg
diffraction signal, if the Burgers vector b of the dislocation is
parallel to the scattering vector at the measured Bragg position, g.

1Grenoble INP-Phelma, Univ. Grenoble Alpes, Grenoble, France. 2ESRF - The European Synchrotron, Grenoble, France. 3CEA Grenoble, IRIG, MEM, NRS, Univ. Grenoble Alpes,
Grenoble, France. 4Synchrotron SOLEIL, L’Orme des Merisiers, Gif-sur-Yvette, France. 5Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany. 6Department of Materials
Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel. 7These authors contributed equally: Bruce Lim, Ewen Bellec, Maxime Dupraz. ✉email: maxime.
dupraz@esrf.fr; mrichard@esrf.fr

www.nature.com/npjcompumats

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00583-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00583-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00583-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-021-00583-9&domain=pdf
http://orcid.org/0000-0001-6863-0293
http://orcid.org/0000-0001-6863-0293
http://orcid.org/0000-0001-6863-0293
http://orcid.org/0000-0001-6863-0293
http://orcid.org/0000-0001-6863-0293
http://orcid.org/0000-0003-3213-6255
http://orcid.org/0000-0003-3213-6255
http://orcid.org/0000-0003-3213-6255
http://orcid.org/0000-0003-3213-6255
http://orcid.org/0000-0003-3213-6255
http://orcid.org/0000-0002-8172-3141
http://orcid.org/0000-0002-8172-3141
http://orcid.org/0000-0002-8172-3141
http://orcid.org/0000-0002-8172-3141
http://orcid.org/0000-0002-8172-3141
https://doi.org/10.1038/s41524-021-00583-9
mailto:maxime.dupraz@esrf.fr
mailto:maxime.dupraz@esrf.fr
mailto:mrichard@esrf.fr
www.nature.com/npjcompumats


For identifying defects, pattern classification23,24 and neural
networks (NN) for fault detection25 have been previously used, for
example in diffraction phase microscopy. Deep learning has also
been used successfully for optical surface-defect detection26–28

and for defect segmentation in scanning transmission electron
microscopy29. These methods are therefore relevant to detect and
classify defects in CXDPs, which are very sensitive to the defect
type. The need of extensive training sets and prior data with a
different types of defects is one of the main difficulties to
overcome with these computational methods. These require-
ments could potentially limit their performance and practical
feasibility. However, with the exponential advancements in
computational resources30 and the possibility of ultra-fast
atomistic relaxation and computation of diffraction patterns with
massive parallelism or graphical processing units (GPUs), it is now
straightforward to calculate the 3D CXDPs of single nanocrystals
from their atomistic configurations. These configurations can be
generated by varying the type and location of the crystal defects
and then relaxed by energy minimization. The relaxation of the
faulted crystal structure allows to model accurately the crystal
defect and has been shown to have a large impact on CXDPs22,
leading to a better agreement between the simulated 3D CXDPs
and experimental measurements.
While models have been widely applied to generate 2D images,

the generation of 3D structures is a nascent field. For example, a
deep-learning NN model has been recently successfully developed
for the classification of crystal structures from 2D diffraction maps
of more than 100,000 simulated crystal structures31, but it has the
drawback that the 2D diffraction fingerprint is not unique across
space groups. Recently, several papers proposed to use deep-
learning models trained on simulated CXDPs to perform phase
retrieval32–36 which is commonly carried out using iterative
algorithms. This demonstrates the emergence of deep learning
in the field of CXD and BCDI.
In this work, we develop and train a 3D convolutional neural

network (CNN), which aims to obtain a fast and precise defect
classification in nanocrystals of common face-centered cubic (fcc)
transition metals. The training data are generated from atomistic
simulations that are representative of the physics of the material.
Once trained, the network can predict dislocations on simulated
and measured 3D CXDPs. The predictions are categorized in two
(defect-free and single dislocation) or three (defect-free, single
screw, and edge dislocations) classes. This work paves the way for
automated defect detection and its reliable recognition from
3D CXDPs.

RESULTS AND DISCUSSION
Building the data sets
In order to build the data set required for training the neural
network (NN), several material simulation tools were used. The
data pipeline allows one to generate simulated CXDPs very close

to the ones obtained from Bragg CXD experiments. Figure 1
illustrates our approach for the creation of 3D CXDPs. The
geometry considered in this study is derived from the Wulff
construction, i.e., the equilibrium crystal shape of a free-standing
crystallite obtained by Gibbs thermodynamic principle, which
minimizes the total surface free energy associated to the crystal-
medium interface37. In order to take into account the presence of
a solid-solid interface, i.e., the presence of an underlying substrate
as in the experimental nanoparticles, the so-called Winterbottom
shape, which can be described as a truncated Wulff construction,
is employed38. An example of a simulated crystal is shown in Fig.
1b–d. Only fcc transition metals are considered in this study (Al,
Au, Ag, Pt), for which the Wulff/Winterbottom geometries mostly
consist of {1 1 1} and {1 0 0} facets. The Winterbottom
constructions are generated using the atomistic simulation code
MERLIN (Rodney (2000 2010). Merlin in a nutshell (unpublished)),
by creating a cube of atoms and cutting it along the <1 1 1> and
<1 1 0> crystallographic directions, the position of the cut planes
being defined by the ratio of the surface energies γ111/γ100 and
γ110/γ100 of the material/potential of interest. The lattice orienta-
tions corresponding to the axes of the simulation cell are x[1 0 0], y
[0 1 0], and z[0 0 1] and are kept constant for all configurations.
The interface plane is selected randomly among the eight possible
{1 1 1} planes, and is cut at a random position corresponding to
65–75% of the height of a free-standing Wulff particle.
Two crystal sizes are considered in this study, the small crystals

consist of 40 × 40 × 40 unit cells (Supplementary Fig. 1) while the
large crystals are made up of 80 × 80 × 80 unit cells (Supplemen-
tary Fig. 2). This corresponds to a size of 15 × 15 × (9–12)nm3/
100,000–140,000 atoms for the small configurations, and 30 ×
30 × (19–25)nm3/800,000–950,000 atoms for the large configura-
tions, the height and number of atoms in the crystal depend on
the distance of the interface plane with respect to the center of
the particle, and on the lattice parameter of the element
considered. For the purpose of this study, we focus on line
defects, namely, edge and screw dislocations. A single dislocation
and its corresponding displacement field (hypothesis of an
isotropic and semi-infinite volume, see ref. 22) is introduced
following two strategies. In the first type of configuration,
hereafter referred to as CD, the dislocation is systematically
introduced close to the center, within a range not exceeding 10%
of the lateral size of the particle. In the second type of
configuration, hereafter referred to as RPD, the position of the
dislocation is completely random. The simulated dislocations have
a Burgers vector of b = 1

2[1 1 0] which is kept constant for all the
configurations. This implies that the initial line directions are t = [1
1 0] and t = [1 1 2] for the screw and edge dislocations,
respectively. If the Burgers vector and line direction of the
dislocations are not varied, the random selection of the interface
plane ensures that a large variety of orientations of the dislocation
line with respect to the normal of the interface plane is available in
the data set as shown in Supplementary Figs. 1 and 2.

- dislocation position

- defect free, screw, edge
- cutting plane

- Element (Pt, Au, Al, Ag)
Random MERLIN LAMMPS PYNX

a b e

d

c

Fig. 1 Schematics of the framework for creating 3D simulated data sets. a A random element, class, crystal surfaces, and dislocation
position are selected. b The corresponding crystal is constructed using MERLIN (Rodney (2000 2010). Merlin in a nutshell (unpublished)) and
relaxed using LAMMPS39. c The dislocation dissociates into Shockley partials and d a strain field builds-up in the crystal. e Finally, the
corresponding 3D CXDP is calculated with PyNX44.
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Once the atomistic configurations are generated, the next step
is to obtain accurate and realistic relaxed configurations that
reproduce as faithfully as possible the displacement fields
measured in the experimental particle. To do so, Molecular Statics
simulations are carried out with the open-source Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)39. The
interaction between atoms is modeled with different embedded-
atom model (EAM) potentials that accurately reproduce elastic
properties as well as surface and stacking fault energies,
parameters that are essential to get an accurate description of
the relaxed defects. For Al, Ag, Au, and Pt, we use the EAM
potentials developed by Mishin et al.40, Williams et al.41, Grochola
et al.42, and Zhou et al.43, respectively.
The crystals are relaxed at 0 K using a conjugate gradient

algorithm. If the dislocations introduced close to the center of the
nanocrystals are stabilized by the image forces during relaxation,
one notable challenge is the tendency of the dislocations
introduced close to a free surface to escape the crystal during
the energy minimization. In order to prevent this phenomenon,
energy tolerance is used as the main stopping criterion for energy
minimization. The latter is defined as the energy change between
two successive iterations divided by the total energy of the
system, and is set to a value of 10−6 for the RPD configurations.
This value is sufficiently high to ensure that the dislocations
dissociate into Shockley partials and remain in the crystal at the
end of the relaxation, as shown in Fig. 1c and Supplementary Figs.
1–3. The small number of minimization steps also prevents large
rotations of the dislocations during the relaxation. It was indeed
observed that edge dislocations are prone to rotate (thus
becoming a mixed dislocation) during the energy minimization,
especially when they are introduced in the vicinity of the free
surfaces. Limiting the number of relaxation steps allows to retain
the edge and screw character of the dislocation during the
relaxation, even if dislocations very close to the free surfaces tend
to have a mixed character as illustrated in Supplementary Figs. 1–
3. Each data set typically contains 1000 relaxed configurations
with one-third of defect-free nanocrystals, one third containing a
relaxed screw dislocation, and the last third with a relaxed edge
dislocation. The time required for the energy minimization of a full
data set ranges between 10 and 25min for the small crystal data
set and 1 h 30 min and 4h for the large crystal data set.
The last step in the data set creation is the calculation of the

three-dimensional CXDPs that are used as input data for our CNN.
This is done by summing the amplitudes scattered by each atom
with its phase factor, following a kinematic approximation:

IðqÞ ¼ j
X

j

f jðqÞe�2πiq:rj j2; (1)

where q is the scattering vector, fj(q) and rj are, respectively, the
atomic scattering factor and position of atom j. Note that the
crystallographic convention is used in this manuscript, i.e., the 2π

factor is not included in q, which implies that a given q value
corresponds to a real space distance d of q= 1/d. The computa-
tion is performed with a GPU using the PyNX44 scattering package,
which considerably speeds up the calculation of the CXDPs. Given
a large number of atoms (105–106 atoms) and a large number of
CXDPs that are generated for each data set (2000–15,000), the
calculations are performed on 64 × 64 × 64 reciprocal space
points. The size of the 3D array is a trade-off between achieving
a high enough resolution in the reciprocal space, which is required
for an accurate comparison with the experimental CXDPs, and
keeping the time required to generate the data set reasonable.
Using a POWER9 machine, each CXDP is calculated in 0.25 s for the
small configurations and 2 s for the large configuration. A data set
containing 10,000 CXDPs is therefore typically generated in 40 min
for the small nanocrystals and 6 h for the large ones.
In order to introduce enough variation in the data set and

prevent overfitting of the model to the training set (Supplemen-
tary Fig. 4), each CXDP is rotated randomly around the chosen Q

!
vector, typically we consider 10 random orientations for each
relaxed configuration. The reciprocal space sampling (δq) is also
varied, which is equivalent to zooming around the Bragg
reflection of interest (Supplementary Fig. 14). A low reciprocal
space resolution (coarse sampling/large δq) can have detrimental
effects on the accuracy of the network predictions (Supplemen-
tary Fig. 14c). To prevent this loss in accuracy, we typically selected
δq values for which the oversampling ratio is consistent with the
one used for experimental data. Note that even for the largest δq
values, the oversampling criteria as defined by Sayre45 are still
fulfilled, as it is always the case for the experimental CXDPs. Since
the simulated particles are significantly smaller than the experi-
mental ones (typically by one order of magnitude), this also
implies that a larger portion of the Brillouin zone is selected for
the simulated particles. We will see in the following that this has
little consequence for the accuracy of the network predictions.
Before training the NN, the distribution of dislocation positions is
typically estimated by comparing the maximum of the intensity
scattered by the atomistic configurations in the data set with the
maximum of the intensity scattered by a defect-free crystal with a
similar number of atoms (Supplementary Fig. 15).

Convolutional neural network
The NN model architecture is displayed in Fig. 2. It takes as input
the 64 × 64 × 64 images of the CXDP intensity and encodes it
through a series of convolution and fully connected layers.
Dropout46 is used in all layers with a dropout rate of 0.2, to avoid
overfitting. This is a standard architecture, nevertheless, it already
gives very accurate predictions on the simulated data set.
Increasing the size of the model, adding extra layers, or increasing
the number of filters in the convolution layers does not increase
the model efficiency and even leads to an overfit of the training
data set in some cases.

64x64x64
32x32x32x32 16x16x16x64 8x8x8x128 4x4x4x256 2x2x512

512

3

Conv3D 4x4 + Dropout

Flatten+Dense

Dense

Fig. 2 Schematics of the neural network structure. The NN model consists of five convolution layers with Relu activation function. We use
dropout46 in all layers with a dropout rate of 0.2, to avoid overfitting. The model ends with 2 fully connected layers with a last softmax
activation function. The model takes the 3D 64 × 64 × 64 diffraction as input and predicts the probability for each class (defect-free,
screw, edge).
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Training is performed using Adam optimization47 with a
learning rate of 10−3 and a batch size of 64. A large amount of
3D data sets are simulated. They systematically specify the correct
output (defect class) for a given input (3D CXDP intensity), and
minimize a categorical cross-entropy loss that quantifies the
difference between the predicted and the correct class labels
(defect-free, screw, and edge). Through this minimization, the
weights (i.e., parameters) of the neural network are optimized to
reduce the classification error. The weights of each convolutional
and fully connected layers are initialized randomly. Moreover, the
instances of the training data set are processed in a random order.
Nonetheless, two independent trainings for a given data set a
CNN always gives a very similar probability distribution as
illustrated in Supplementary Fig. 16. The simulated data are split
into training, validation, and test sets. The model fit is performed
with the training set and stopped when the validation set
accuracy reaches a maximum. The final model prediction on the
test set containing 11,556 CXDPs calculated from 1284 atomistic
configurations reaches a very high total accuracy score of 97.2%.
In addition, the confusion matrix displayed in Supplementary Fig.
7 shows that almost all defect-free crystals are predicted. Most of
the errors (4.7%) come from edge dislocations predicted as screw.
Furthermore, as illustrated in Supplementary Figs. 11 and 12, a
simpler two classes model (Supplementary Fig. 10) predicting
either a defect-free or a defective crystal can reach an even higher

accuracy. From an occlusion sensitivity test48 on a simulated CXDP
shown in Supplementary Fig. 13, we demonstrate that the NN
mainly uses the vicinity of the Bragg peak to make its prediction.

Validation on experimental data
The experimental data sets correspond to 3D reciprocal space
maps obtained by measuring the Bragg CXDPs of Pt nanoparticles.
Single particles were measured either at the SixS beamline of
synchrotron SOLEIL (Orsay, France) or at the P10 beamline of
synchrotron PETRA (Hamburg, Germany). The 3D Bragg CXDPs
were collected at the asymmetrical 111 Pt Bragg reflection at the
SixS beamline or at the symmetrical (specular) 111 Pt Bragg
reflection at the P10 beamline. The experimental reciprocal space
data sets have been orthonormalized using the xrayutilities
package49. Figure 3 displays the CXDPs of the experimental data
sets, as well as their reconstructed Bragg electron density using
phase retrieval algorithms. Defect-free (Fig. 3a, c) as well as
defective crystals (Fig. 3b, d) were measured. A closer look at Fig.
3b, d reveals the variety of dislocation configurations that are
found in experimental nanocrystals. These dislocations were most
likely nucleated during the growth of the nanoparticles, and did
not escape during the annealing at 1100 °C, suggesting that they
are strongly pinned in the nanocrystal. For the SixS data, the screw
dislocation is close to the center of the nanocrystal (Burgers vector
of b = 1

2[110]). On the other hand, the dislocation in the P10

a SixS - no defect

b SixS - screw dislocation

c P10 - no defect

d P10 - mixed dislocation
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Fig. 3 CXDPs and reconstructed Bragg electron density from Pt NPs measured on the P10 and SixS beamlines. a Defect-free NP, SixS
beamline b Defective NP, SixS beamline c Defect-free NP, P10 beamline d Defective NP, P10 beamline. The black arrows indicate the location of
the dislocations. The scale bar indicates a length of 100 nm. The CXDPs are on a logarithmic scale to enhance the fringes visibility.
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defective nanocrystal is closer to the free surfaces. In addition, the
dislocation line is not perfectly straight and parallel to the Burgers
vectors (b = 1

2[101]). It can thus be described as a mixed
dislocation with a dominant screw character.
In order to reinforce the agreement between the simulated and

experimental data sets each diffraction measurement is prepro-
cessed before computing the model prediction. The CXDP center
of mass is placed at the center of the array, as it is also the case for
the simulated data. Finally, the CXDP is normalized so that the
maximum is equal to 1.
The results of our best NN model on the preprocessed CXDPs

are displayed in Fig. 4 along with slices along Qx, Qy, and Qz for

each experimental CXDP. Some crystals were measured several
times under different experimental conditions (temperature, gas
environment), for example, P10 (no defects 1, 2, and 3 in Fig. 4),
allowing us to compare the model predictions for the same crystal
but with slightly different CXDPs.
The performances of this model on experimental data are

excellent, all the experimental examples being predicted in the
correct class, and most of them with a very high probability
(>95%). Although still very good, the predictions for the P10 data
(mixed dislocation) are generally slightly worse with an accuracy
ranging between 82% and 94%. This is not surprising given the
mixed type of dislocation (with a dominant screw character),

Fig. 4 Predictions from the best model on experimental data. For each example, the probabilities for the 3 classes are shown in the title
where blue, red, and green correspond respectively to defect-free, screw, and edge class. Three cross-sections of the 3D CXDP are shown for
each example. Using this NN model, all examples are correctly predicted (see green ticks). The CXDPs are on a logarithmic scale to enhance
the fringes visibility.
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which necessarily increases the probability of identifying the
defect as an edge dislocation. Nonetheless, even if the dislocation
is located close to a free surface and therefore induces weak
distortions in the CXDP (Fig. 3d), our model still manages to
identify this crystal as defective with almost a 100% probability.
This demonstrates the robustness of the model trained on this
data set, which can predict both centered and off-centered
dislocations with very high accuracy.
The simulated training data set used to fit the NN model has a

large influence on the accuracy of the predictions on experimental
data. This data set must contain enough diversity, while sharing
enough similarities with the experimental CXDPs. The predicted
probabilities on experimental data for the same model architec-
ture but different simulated training data sets are shown in Table
1. Six different simulated data sets have been trained: (1) single
element (Pt) unrelaxed small crystals, 100% centered dislocations
(CD), (2) relaxed Pt small crystals (100% CD), (3) relaxed Pt large
crystals (100% CD), (4) relaxed large crystals with multiple
elements (Au and Pt) (100% CD), (5) relaxed multi-elements large
crystals with dislocations at random position (100% RPD) and (6)
relaxed multi-elements large crystals with a mix of CD and RPD
configurations (75% CD and 25% RPD). The first two rows of Table
1 emphasize the importance of accurately modeling the displace-
ment field of the dislocations. Indeed, while these two models
trained on relaxed and unrelaxed data sets predict accurately the
defect-free configurations, they fail at identifying the mixed
dislocation (P10 data). However, the model trained on the relaxed
data set performs much better on the SixS-“screw” data, which is
correctly identified as a screw dislocation (see also Supplementary
Fig. 9). On the other hand, the size of the relaxed crystals does not
have a major impact on the accuracy of the model (Table 1,
second and third row), although the predictions of the models
trained on the large configurations is slightly more accurate, in
particular for defect-free configurations (Supplementary Tables 2
and 6).
The addition of several elements in the data set improves the

accuracy of the predictions for the SixS data, but has no effect on
the P10 data (Table 1, fourth row). Nonetheless, mixing several
elements in the data set generally results in better model

predictions compared to the models based on single elements,
in particular for the large crystal size (Supplementary Tables 5–8).
The position of the dislocation also has a major impact on the
model predictions. As seen from Table 1 (sixth row), introducing
the dislocation at random positions, including positions close to
the crystal-free surfaces, results in more accurate predictions for
the P10 data. However, this improvement is at the expense of the
predictions for the SixS data, which is correctly identified as a
dislocation, but with an edge character instead of a screw. The
predictions for the defect-free data are not affected and still
excellent (see also Supplementary Fig. 8).
In order to obtain accurate predictions simultaneously for both

P10-“mixed” and SixS-“screw” dislocations, one must increase the
diversity in the training data set. This has been achieved by
building a data set consisting of a mix of CD and RPD
configurations (Table 1, seventh row). Training the CNN on this
mixed data set significantly enhances the performances of the
model and allows to predict correctly and with very high accuracy
all the experimental examples.
We must emphasize that, despite the differences in the ability

of the models to generalize to experimental data, the accuracy on
the simulated test data for each training data set is always higher
than 86% (Supplementary Tables 1 and 5). Our work illustrates the
necessity of using a simulated trained data sets close to real
structures: atomistically relaxed nanoparticles with accurate
modeling of the dislocation displacement field, multiple atomic
elements, and random location of the dislocations. It also
demonstrates that a convolutional neural network can predict
dislocations in a crystal from its 3D coherent diffraction pattern.
Combined with the fast scanning capabilities of some synchrotron
beamlines50, this approach could be used to perform a fast
screening of the nanocrystals on a sample of interest. This would
allow to determine the proportion of defect-free nanocrystals as
well as nanocrystals containing a specific type of crystal defect,
and select the best candidate for a coherent diffraction imaging
experiment. In addition, if the CNN was only tested on metallic fcc
particles, we foresee that it could be extended to more complex
systems like for instance multi-element particles.

Table 1. Predicted probabilities in % on the experimental data from several models trained with different simulated training data sets.

Experimental example P10
mixed 1

SixS
Screw 1

P10 no
defect 1

P10 no
defect 2

SixS
Screw 2

P10
mixed 2

SixS
no defect

P10
mixed 3

P10 no
defect 3

Training data set

Pt-unrelaxed small
crystals CD

p 99
s 1
e 0

p 0
s 3
e 97

p 100
s 0
e 0

p 100
s 0
e 0

p 0
s 1
e 99

p 97
s 2
e 1

p 100
s 0
e 0

p 100
s 0
e 0

p 100
s 0
e 0

Pt-relaxed small
crystals CD

p 99
s 1
e 0

p 0
s 100
e 0

p 100
s 0
e 0

p 100
s 0
e 0

p 0
s 69
e 31

p 72
s 18
e 10

p 72
s 16
e 12

p 92
s 6
e 2

p 100
s 0
e 0

Pt-relaxed big
crystals CD

p 99
s 0
e 1

p 0
s 100
e 0

p 100
s 0
e 0

p 100
s 0
e 0

p 25
s 38
e 37

p 99
s 0
e 1

p 99
s 0
e 1

p 99
s 0
e 1

p 100
s 0
e 0

Multi-elements relaxed
big crystals CD

p 98
s 0
e 2

p 0
s 100
e 0

p 100
s 0
e 0

p 100
s 0
e 0

p 0
s 98
e 2

p 88
s 5
e 8

p 99
s 0
e 1

p 94
s 2
e 3

p 100
s 0
e 0

Multi-elements relaxed
big crystals RPD

p 9
s 53
e 38

p 0
s 36
e 64

p 100
s 0
e 0

p 100
s 0
e 0

p 0
s 8
e92

p 0
s 58
e 42

p 99
s 1
e 0

p 0
s 63
e 37

p 100
s 0
e 0

Multi-elements-relaxed
big crystals 75% CD,
25% RPD

p 0
s 94
e 6

p 0
s 100
e 0

p 98
s 2
e 0

p 99
s 1
e 0

p 0
s 97
e 3

p 0
s 84
e 16

p 75
s 16
e 9

p 0
s 82
e 18

p 100
s 0
e 0

In each cell, the prediction probability for the 3 classes (prefect: p, screw: s, edge: e) is shown in bold if the prediction is correct and in italics if it is wrong. CD
and RPD stand for centered dislocations and random position dislocations, respectively.
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From 3D coherent X-ray CXDPs, we used a convolutional neural
network to predict defect classes. As a result, we obtain an automatic
procedure for defect classification in fcc metals, which does not
require any user manipulation, any intensive live data mining, and
achieves high-accuracy classification even in the presence of defects
close to the free surfaces of the nanocrystals. This tool can be
exploited during experiment execution to provide rapid feedback to
the investigator, enables one to identify on the fly target defect types
present in individual nanocrystals, and furthers the possibility of
unsupervised data collection, extremely relevant given the increases
data rates expected at ever-improving facilities. Our study paves the
way for defect recognition of three-dimensional structural data in
big-data materials science.

METHODS
Training the network
We used the python deep-learning API Keras51 running the TensorFlow
backend52 to build, develop and train our NN. The training was performed
in parallel on two NVIDIA Tesla V100 GPUs and a POWER9 computer. We
use a categorical cross-entropy loss function Lðy; ŷÞ ¼ � 1

B

PB
n¼1

PNc
c¼1 yn;c

log ð̂yn;cÞ, where B is the batch size, Nc the number of classes, yn,c= 1 for
data element n if the true class is c and yn,c= 0 otherwise. ŷn;c is the
predicted probability for class c. The simulated data set is divided into
training, validation, and test, corresponding respectively to 85%, 10%, and
5% of the total data set. The model is trained with a learning rate of 10−3

and a batch size of 64 on the training set until the model accuracy
calculated on the validation set reaches a plateau (Supplementary Figs. 5,
6, and 11). A typical training requires between 15 and 30min depending
on the data set (8–10 s per epoch and 100–200 epochs). Decreasing the
learning rate and increasing the batch size do not further improve the
model accuracy. Once trained, the model performance is evaluated on the
test set and reaches a total accuracy >86% on the simulated data for all
models presented in Table 1.

Sample growth
Pt nanocrystals were prepared by the solid-state dewetting of a 30-nm thin
Pt film for 24 h at 1100 °C in air53. The Pt film was deposited on α-Al2O3

(sapphire) with an electron beam evaporator. The Pt nanocrystals have
their c-axis oriented along the [111] direction normal to the (0001)
sapphire substrate. A standard photolithography method was employed to
prepare a patterned layer of photoresist on sapphire prior to the electron
beam evaporation of Pt. The lithographic processing route ensured that a
number of dewetted Pt particles are well-separated from their neighbors
and that only one crystallite is irradiated by the incoming X-ray beam. The
particle size ranges from 100 to 700 nm.

DATA AVAILABILITY
The data supporting the findings of this work are available from the corresponding
author on reasonable request.
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